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Sums of Distinct Elements from a Fixed Set 

By Torleiv KI4ve 

Abstract. A sequence of natural numbers is complete if every large integer is a sum 

of distinct elements of the sequence. The greatest integer which is not such a sum is 

called the threshold of completeness. Richert developed a method to compute the 

threshold of completeness. We prove that Richert's method applies to a large class of 

complete sequences. Further,we consider in some detail these concepts for the 

sequences of powers (with fixed exponents) and give numerical results. 

1. Let M = {ml, IM2, . . . } be any increasing sequence of distinct natural 

numbers. M is called complete if every sufficiently large integer may be expressed as 
a sum of distinct elements of M. If M is complete, then there is a greatest integer 
which cannot be so expressed. This is called the threshold of completeness of M and 
is denoted by 0(M). 

A survey of papers on complete sequences is given by Graham [7]. The threshold 
of completeness has beeni computed for a number of sequences by Sprague [13], 
Richert [ 11], [12], Makowski [10], Graham [6], [7], Lin [9], and Dressler, Makowski 
and Parker [5]. Some of these values have been obtained independently by others 
(see [1], [2], [3], [4], [8]). The computations have been based on a theorem of 
Richert [11] or its underlying idea. An algorithm is given by Lin [9]. In this paper 
we give a partial answer to the question: For which complete sequences may Lin's 
algorithm be used to compute the threshold of completeness? In particular, we make 
a closer study of the threshold of completeness of the sequences of powers with fixed 
exponents. 

2. We shall use the following notations: 
(a, b] denote the integers n such that a < n S b, we call it an interval and 

b - a is its length; 

M(k) = {ml,m2, . . . Mk 
a= {[n] In = 1, 2, .. } where [xl denote the greatest integer 6x; 

No = {0, 1,2,..}; 

we define a relation vE between sequences of integers by: P vE Q if each element of 
P may be expressed as a sum of distinct elements of Q. 

LEMMA 2.1. If mi+ 1 < 2mi for i > K and 

(2.1) (a,a +mk+lAEM(k) 
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for some a E No and some k > K, then 

(2.2) (a, a + ml+ 1] vE M(1) 

for all I > k. 
We prove (2.2) by induction on 1. By (2.1) it is true for l = k. Suppose it is 

true for some I > k. Adding ml+ to each element of (a, a + ml+1] and merging the 

two intervals, we get (a, a + 2m,+ 11 ]A! M(l+ 1). Since ml+ 2 < 2m,+ 1, this completes 

the induction. 

THEOREM 2.1 (RICHERT [11]). If mi+ 1 < 2mi for i >Kand (a, a + mk+lI 

vF M(k) for some a E No and some k > K, then M is complete and 0(M) < a. 

Proof. Let b > a. Since ml oo for I oo, b < a + ml+1 for some . By 

Lemma 2.1 {b} AB M(l). Hence {b} RE M. 

Theorem 2.1 provides a method to calculate 0(M). A discussion of an algorithm 

is given by Lin [9]. The crucial point is the existence of a and k such that (2.1) is 

satisfied. This will be further discussed in Lemma 2.2 and Theorem 2.3 below. If we 

want to compute On = 0({mn, mn+ 1, . . . }) for n = 1, 2, . . . , 1, the algorithm may 

be modified to yield all these values in one run (see KlOve [8]). We give a sketch of 

this modified algorithm. 
Algorithm 0. 
Step 1. k:= l - 1;NNl. {0}; 
Step 2. k:=k + 1; Nk = Nk-, U {n + mk l n E Nk-l }; 
Step 3. If k < K, then go to Step 2. 

Step 4. If Nk does not contain an interval of length >mk , then go to Step 2; 

Step 5. a:=leastxsuchthat(x,x+mk+1I CNk; 

Step 6. k:=k + 1; if mk > a,then go to Step 8; 

Step 7. Nk:= Nk-, U {n + mk In ENk-, & n < a - mk}; 

a:= least x such that (x, a + 1] C Nk; go to Step 6; 

Step 8. 0,:= a; 
Step 9. k:= 1; 
Step 10. If k> 1,then k:= k - 1,else stop. 

Step 11. Nk:=Nk+I U {n +mk InENk+1 &n< Ok+l mk+I1; 

Ok: = least x such that (x, 0k+ 1 + I1 C Nk; go to Step 10. 
The actual algorithm will depend on how we choose to represent the sets Nk. 

Clearly, for I = 1 the algorithm will give just 0(M). 
The following theorem may be used to simplify the algorithm (this simplifiled 

algorithm will usually be less efficient, however). 
THEOREM 2.2. If mi+ 1 < 2mi for i > K and 

(2.3) (a,a+mk+l A3M(k) 

for some a E No and some k > K, then 

(0(M), 0(M) + m,+ 11 A M(,) for some I > K. 

Proof. Let a* = mn {a 1(2.3) is satisfied for some k > K}. By Theorem 1, a* > 

0(M). Suppose a* > 0(M). Then a* = Zi mi, where i, < 11, for some 11. By assump. 



1146 TORLEIV KLIDVE 

tion 

(a*,a* + mL+I] k M(L) 

for some L > K. Let I = max(l, L). Then, by Lemma 2.1 (a*, a* + m+ J1] x M(l). 

Further {a*} k M(l). Hence 

(a* - 1,a* - 1 + ml+ I IEM(,) 

contradicting the definition of a*. 
We now turn to the question: For which complete sequences may the algorithm 

above be used to compute the threshold of completeness? A partial answer is given 

by the following lemma and Theorem 2.3 below. 
LEMMA 2.2. If M is complete and mk+ I 6 2mk - 0(M) - I for k > K, let L 

be the minimum I > K such that ml+ 1 > 1 + 0(M) + mk. T7hen for all I > L 

(0(M), 0(M) + ml +I IEM(1)- 

Proof Let 0 = 0(M). We may assume that mK > 0 - 2 (otherwise we just 

increase K). First, we prove by induction on n that 

(2.4) (0, mn+l 1] U (O + mK, 2mn -1] AFEM(fn) 

for n > K. By assumption (0, mn + I E 1] A! M and since mk for k > n + 1 may 

never occur as a summand, we get 

(2.5) (0, mn+ 1 -11 F M(n) 

for all n. In particular, (2.5) is true for n = K - 1. Adding mK to each element,we 

get (0 + MK, 2mK - 1] k M(K), and so (2.4) is true for n = K. Suppose it is true 

for some n > K. In particular, 

(2.6) (0 + mK, 2mn - 1] E M(n). 

Adding mn+i to each element of the set in (2.5), we get 

(2.7) (0 + mn+ 1, 2mn+ 1-1 ]4E M(O + 1) 

Since 0 + mn+1 < 2mn, (2.5), (2.6), and (2.7) show that (2.4) is true for n replaced 

by n + 1 and the induction is complete. Now choose I > K such that ml+ 1 > 0 + 1 

+ MK. Then (0, 2m, - 1] k M(l). Finally, 

2m, - 1 = 0 + (2m, - 1 - 0) > 0 + ml+I 

and the lemma is proved. 
THEOREM 2.3. Let M be complete. If, for some e > 0, m,+1 (2 - e)m, for 

all I >> 0, then 0(M) may be computed by algorithm 0. 

Proof. Choose k > K such that emk > 0(M) + 1. Then 

mk+ 1 < 2mk - emk < 2mk - O(M) 1. 

By Lemma 2.2 there exists an I such that 

(0(M), 0(M) + m+ 1 ] E M(l) 

and algorithm 0 applies. 
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We now give a trivial lemma which may be used to find a lower bound for 0(M). 
LEMMA 2.3. If M is complete, then 

0(M) > max(mn +1 - 2n-1). 
n 

Proof: The number of distinct sums of distinct elements of M(n) is S 2n. Hence, 
if 2n + 1 mn +1, then there is at least one integer in [mn + 1 - 1, mn ,l) 
which cannot be expressed as a sum of distinct elements of M. Hence 0(M) > mn +1 

-1. 

100- 

10 

1.5 2.0 2.5 

FIGURE 1. t(a)for 1.50 - 2.25. 

3. Sprague [131, [14] proved that N' is complete for a =2, 3, . .. and found 
that 0(N2) =128. Since N' is a subsequence of Nnl'i, N'~ is complete for all rational 
a. Graham [6] proved that 0(N3) - 12758 and Lin [9] that 0(N4) = 5134240. Let 
t(oa) = 0(N"). The rest of this paper is concerned with t(a). 

THEOREm 3.1. If NP is complete, then there exists a 13' > 13 such that t(a) is 
constant on [13, 013). 

Note that [13, 13') denotes an interval in the ordinary sense. 
Proof. Clearly [(k + l)PJ < 2 [ku] - t1)-1 for k ?> 0. Hence, by Lemma 

2.2, there exists an I such that 

(3.1) (tG3, g) + [(I ? IjA]] A", 

By Lemma 2.1 we may assume that 

(3.2) [ifs] > t1) 
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TABLE 1 

Values of t(O.1, + 0.01y) 

s3'Y 0 2 4 6 8 

15 4 4 4 4 4 
16 24 20 11 11 22 
17 23 33 24 13 37 
18 39 43 44 46 64 
19 58 51 94 88 91 
20 128 115 76 111 81 
21 127 169 147 193 159 
22 166 183 259 221 294 
23 306 310 306 517 409 
24 530 646 728 493 1095 
25 724 702 975 798 892 

26 1039 1180 1583 1324 1671 
27 1702 1741 1791 1925 2286 
28 1987 2873 2671 3909 4711 
29 3821 4882 4312 4866 5814 
30 12758 7110 6206 8895 8536 
31 13399 10594 11530 11008 16458 
32 11335 18114 18654 18165 21637 
33 21090 24770 23807 28420 29178 
34 32666 40701 40018 46056 49473 
35 54714 54869 56832 65719 86669 
36 74648 95679 88685 94399 109647 
37 132511 126425 158215 177256 174059 
38 206162 213823 240047 247208 286548 
39 324446 331169 365194 395838 403710 
40 5134240 483960 635701 610633 726860 
41 742867 831254 812774 984068 981046 

Choose ,B' > ,B such that [n'] is constant on [, ,B') as a function of a for n-1, 2, 
...,? I + 1, e.g. 

(3.3) j' = min{log([ng] + 1)/log n I 1 < n I + 1}. 

Then, for all a E [,B, ,B'), 

(t(), t(g) + [(I + 1)c] ] Av AN(l 

By Theorem 2.1 t(a) S tq6). Suppose t(a) < t(q) for some a E [j,B,,'). Then 

t(,B)-= E [np] = E [ni] 
i i 

since n1 < I for all j ([nt] < tq) < [l] < [P']), a contradiction. Hence t(oa) = tq) 
for all a E [(,B ('). 
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We see that, given ,B, we may compute a ,B' satisfying the theorem as follows: 
Using algorithm 0, we compute an 1 satisfying (3.1) and (3.2). Then a ,B' is given by 
(3.3). Further,we may replace ,B by ,B' and compute a new interval. Using this algorithm, 
we computed t(a) for 1 S a < log 686/log 15 t 2.412. In particular, 

t(oa) = 0 for 1 < a < log 5/log 3 t 1.465, 

t(o) = 4 for log 5/log 3 < a < log 3/log 2 - 1.585. 

A plot of t(a) versus a for 1.50 6 a 6 2.25 is given in Fig. 1. 

We have computed t(a) for a = 1.50 (0.02) 4.18 using algorithm 0. The values 
are given in Table 1. (The value for t(4) is taken from Lin [9] and has not been 
recomputed.) It is striking that the value of t(a) at a = 4 is much greater than the 
surrounding values. The referee suggests that this is probably due to the fact that 
x4 0, 1 (mod 16). 

Acknowledgment. Thanks to the referee, the exposition has been improved in 
some places. In particular, Lemma 2.3 has been sharpened. Further, the referee has 
noticed that all the results in this paper are valid for nondecreasing sequences M. If 

mk ?? nothing needs to be changed. If mk is constant for k > K, consider the 
sequence M' = (ml, m2, ... * MK-ly mK 2mKM 3mKK ) 
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